[(-4y^2+7y-9)-(8y^2+5y-6)]-[(-3y^2-5y+4)+(-10y^2-3y+7)]=

Simple and best practice solution for [(-4y^2+7y-9)-(8y^2+5y-6)]-[(-3y^2-5y+4)+(-10y^2-3y+7)]= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for [(-4y^2+7y-9)-(8y^2+5y-6)]-[(-3y^2-5y+4)+(-10y^2-3y+7)]= equation:


Simplifying
[(-4y2 + 7y + -9) + -1(8y2 + 5y + -6)] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Reorder the terms:
[(-9 + 7y + -4y2) + -1(8y2 + 5y + -6)] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Remove parenthesis around (-9 + 7y + -4y2)
[-9 + 7y + -4y2 + -1(8y2 + 5y + -6)] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Reorder the terms:
[-9 + 7y + -4y2 + -1(-6 + 5y + 8y2)] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0
[-9 + 7y + -4y2 + (-6 * -1 + 5y * -1 + 8y2 * -1)] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0
[-9 + 7y + -4y2 + (6 + -5y + -8y2)] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Reorder the terms:
[-9 + 6 + 7y + -5y + -4y2 + -8y2] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Combine like terms: -9 + 6 = -3
[-3 + 7y + -5y + -4y2 + -8y2] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Combine like terms: 7y + -5y = 2y
[-3 + 2y + -4y2 + -8y2] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Combine like terms: -4y2 + -8y2 = -12y2
[-3 + 2y + -12y2] + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Remove brackets around [-3 + 2y + -12y2]
-3 + 2y + -12y2 + -1[(-3y2 + -5y + 4) + (-10y2 + -3y + 7)] = 0

Reorder the terms:
-3 + 2y + -12y2 + -1[(4 + -5y + -3y2) + (-10y2 + -3y + 7)] = 0

Remove parenthesis around (4 + -5y + -3y2)
-3 + 2y + -12y2 + -1[4 + -5y + -3y2 + (-10y2 + -3y + 7)] = 0

Reorder the terms:
-3 + 2y + -12y2 + -1[4 + -5y + -3y2 + (7 + -3y + -10y2)] = 0

Remove parenthesis around (7 + -3y + -10y2)
-3 + 2y + -12y2 + -1[4 + -5y + -3y2 + 7 + -3y + -10y2] = 0

Reorder the terms:
-3 + 2y + -12y2 + -1[4 + 7 + -5y + -3y + -3y2 + -10y2] = 0

Combine like terms: 4 + 7 = 11
-3 + 2y + -12y2 + -1[11 + -5y + -3y + -3y2 + -10y2] = 0

Combine like terms: -5y + -3y = -8y
-3 + 2y + -12y2 + -1[11 + -8y + -3y2 + -10y2] = 0

Combine like terms: -3y2 + -10y2 = -13y2
-3 + 2y + -12y2 + -1[11 + -8y + -13y2] = 0
-3 + 2y + -12y2 + [11 * -1 + -8y * -1 + -13y2 * -1] = 0
-3 + 2y + -12y2 + [-11 + 8y + 13y2] = 0

Reorder the terms:
-3 + -11 + 2y + 8y + -12y2 + 13y2 = 0

Combine like terms: -3 + -11 = -14
-14 + 2y + 8y + -12y2 + 13y2 = 0

Combine like terms: 2y + 8y = 10y
-14 + 10y + -12y2 + 13y2 = 0

Combine like terms: -12y2 + 13y2 = 1y2
-14 + 10y + 1y2 = 0

Solving
-14 + 10y + 1y2 = 0

Solving for variable 'y'.

Begin completing the square.

Move the constant term to the right:

Add '14' to each side of the equation.
-14 + 10y + 14 + y2 = 0 + 14

Reorder the terms:
-14 + 14 + 10y + y2 = 0 + 14

Combine like terms: -14 + 14 = 0
0 + 10y + y2 = 0 + 14
10y + y2 = 0 + 14

Combine like terms: 0 + 14 = 14
10y + y2 = 14

The y term is 10y.  Take half its coefficient (5).
Square it (25) and add it to both sides.

Add '25' to each side of the equation.
10y + 25 + y2 = 14 + 25

Reorder the terms:
25 + 10y + y2 = 14 + 25

Combine like terms: 14 + 25 = 39
25 + 10y + y2 = 39

Factor a perfect square on the left side:
(y + 5)(y + 5) = 39

Calculate the square root of the right side: 6.244997998

Break this problem into two subproblems by setting 
(y + 5) equal to 6.244997998 and -6.244997998.

Subproblem 1

y + 5 = 6.244997998 Simplifying y + 5 = 6.244997998 Reorder the terms: 5 + y = 6.244997998 Solving 5 + y = 6.244997998 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + y = 6.244997998 + -5 Combine like terms: 5 + -5 = 0 0 + y = 6.244997998 + -5 y = 6.244997998 + -5 Combine like terms: 6.244997998 + -5 = 1.244997998 y = 1.244997998 Simplifying y = 1.244997998

Subproblem 2

y + 5 = -6.244997998 Simplifying y + 5 = -6.244997998 Reorder the terms: 5 + y = -6.244997998 Solving 5 + y = -6.244997998 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-5' to each side of the equation. 5 + -5 + y = -6.244997998 + -5 Combine like terms: 5 + -5 = 0 0 + y = -6.244997998 + -5 y = -6.244997998 + -5 Combine like terms: -6.244997998 + -5 = -11.244997998 y = -11.244997998 Simplifying y = -11.244997998

Solution

The solution to the problem is based on the solutions from the subproblems. y = {1.244997998, -11.244997998}

See similar equations:

| 5-2(x+2)=2x | | 2g^2-g=2 | | 4z=14-18 | | 100=50-x(50-x+x) | | 24(y-3)= | | 7/12=^t | | x-20=34 | | s^2-4s-25=0 | | =3y-2x-3y+7x | | P=14s | | B+12=a | | 5x-5=40x+9 | | 4y(6y-5)+15y= | | [(-2x^2+4x+5)-(-9x^2+9x+8)]-(x^2+6x-3)= | | t^2=7/12 | | 4v+7(1-3v)=-27 | | 15=y-x | | 2n+7-7n=n+3+2n+12 | | 2(3x+5)=-43+5 | | (z^2)+5z-7=0 | | B=a/20 | | (3c^2d^(1/2))^-2(2d^2c^(-1/2))^-1 | | t^2=0.0001 | | b^2=0b-15 | | 14/4n^-6 | | 0.0001=t^2 | | Log^4(x+5)=2 | | w^2-18w=-72 | | 3x+3=9x+21 | | (z^2)+11z-468=0 | | -4-(1/9) | | -66=-6(8x+3) |

Equations solver categories